Este blog fue creado por algunos de los alumnos de 5to año sección “A”, con el motivo de enseñar e instruir a los estudiantes en los diversos temas que se implementan en la materia de física impartida por la profesora Oly Mar Valenzuela, que ha sido una de las mejores profesoras que hemos tenido. Y estamos muy agradecidos por todo lo que nos ha enseñado.
República Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación
Liceo Bolivariano Prof. “Fernando Ramírez”
Independencia --- Yaracuy
jueves, 4 de junio de 2009
Motivo del blog
miércoles, 3 de junio de 2009
LA FÍSICA
Desde un punto de vista aplicado, el campo de la física es mucho más amplio, ya que se utiliza, por ejemplo, en la explicación de la aparición de propiedades emergentes, más típicos de otras ciencias como Sociología y Biología. Esto hace que la física y sus métodos se pueda aplicar y utilizar en otros campos de la ciencia y se utilicen para cualquier tipo de investigación científica.
La física es una de las Ciencias Naturales que más ha contribuido al desarrollo y bienestar del hombre porque gracias a su estudio e investigación ha sido posible encontrar explicación a los diferentes fenómenos de la naturaleza, que se presentan cotidianamente en nuestra vida diaria. Como por ejemplo, algo tan común para algunas personas como puede ser la lluvia, entre muchos otros.
Breve historia de la física
Esta etapa denominada oscurantismo en la ciencia termina cuando Nicolás Copérnico, considerado padre de la astronomía moderna, en 1543 recibe la primera copia de su De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia empleando por primera vez experimentos para comprobar sus aseveraciones, Galileo Galilei. Con la invención del telescopio y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se le unieron grandes contribuciones por parte de otros científicos como Johannes Kepler, Blaise Pascal, Christian Huygens.
Posteriormente, en el siglo XVII, un científico inglés reúne las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la tierra en lo que el llamó gravedad. En 1687, Sir Isaac Newton en su obra Philosophiae Naturalis Principia Mathematica formuló los tres principios del movimiento y una cuarta Ley de la gravitación universal que transformaron por completo el mundo físico, todos los fenómenos podían ser vistos de una manera mecánica.
El trabajo de Newton en el campo, perdura hasta la actualidad; todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. De ahí que durante el resto de ese siglo y el posterior siglo XVIII, todas las investigaciones se basaron en sus ideas. De ahí que otras disciplinas se desarrollaron, como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel Bernoulli, Robert Boyle, Robert Hooke entre otros, pertenecen a esta época.
Es en el siglo XIX donde se producen avances fundamentales en la electricidad y el magnetismo principalmente de la mano de Charles-Augustin de Coulomb, Luigi Galvani, Michael Faraday y Georg Simon Ohm que culminaron en el trabajo de James Clerk Maxwell de 1855 que logró la unificación de ambas ramas en el llamado electromagnetismo. Además se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.
el Siglo XX, la Física se desarrolló plenamente. En 1904 se propuso el primer modelo del átomo. En 1905, Einstein formuló la Teoría de la Relatividad especial, la cual coincide con las Leyes de Newton cuando los fenómenos se desarrollan a velocidades pequeñas comparadas con la velocidad de la luz. En 1915 extendió la Teoría de la Relatividad especial, formulando la Teoría de la Relatividad general, la cual sustituye a la Ley de gravitación de Newton y la comprende en los casos de masas pequeñas. Max Planck, Albert Einstein, Niels Bohr y otros, desarrollaron la Teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la Mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada.
Posteriormente se formuló la Teoría cuántica de campos, para extender la mecánica cuántica de manera consistente con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de los 40, gracias al trabajo de Richard Feynman, Julian Schwinger, Tomonaga y Freeman Dyson, quienes formularon la teoría de la electrodinámica cuántica. Asimismo, esta teoría suministró las bases para el desarrollo de la física de partículas. En 1954, Chen Ning Yang y Robert Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top.
Los intentos de unificar las cuatro interacciones fundamentales ha llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Es por eso que nuevas teorías han visto la luz, como la supergravedad o la teoría de cuerdas, que es donde se centran las investigaciones a inicios del siglo XXI.
Partículas subatómicas y la Ley de Coulombs
Un protón: es una partícula subatómica con una carga eléctrica elemental positiva (1,602 × 10–19 culombios) y una masa de 938,3 MeV/c2 (1,6726 × 10–27 kg) o, del mismo modo, unas 1836 veces la masa de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 10 años, aunque algunas teorías predicen que el protón puede desintegrarse, es decir el que sus partículas pierdan la consistencia que poseen y como tal el átomo. El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.
Un electrón: es comúnmente representado por el símbolo: e−, es una partícula subatómica o partícula elemental de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones.
La ley de Coulumb puede expresarse como: La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
Biografía de Coulomb
CHARLES COULOMB, físico e ingeniero militar francés, sirvió durante nueve años en el ejercito de Francia que ocupaba las Indias Occidentales, pero un deterioro de su salud lo obligó a regresar a París en donde reorientó sus actividades hacia la investigación científica. Al estallar la Revolución Francesa huye de la ciudad, retornando a ella en 1795 cuando fue nombrado miembro del Instituto de Ciencias de Francia, en donde escala posiciones hasta llegar a ser Inspector General de la Instrucción Pública.
Deben haber sido difíciles las experiencias vividas por Charles Augustin de Coulomb para ejercer la práctica de científico investigador durante los turbulentos períodos revolucionarios que le tocó vivir en su país natal. Nacido de una familia de posición social y económica alta, no obstante, y debido a las peculiares características de sus padres, vivió períodos de indigencia. Aunque se le conocen muchísimos trabajos sobre mecánica aplicada, sin embargo, la historia lo reconoce con excelencia por su trabajo matemático sobre la electricidad conocido como «Leyes de Coulomb».
MEDIDAS AGRARIAS
Esta unidad tiene un solo múltiplo que es equivalente a 100 áreas y recibe el nombre de hectárea (ha), y un solo submúltiplo que equivale a la centésima parte del área, llamada centiárea (ca).
Para medir extensiones en el campo se utilizan las medidas agrarias:
La hectárea equivale al hectómetro cuadrado.
1 Ha = 1 hm2 = 10 000 m²
El área equivale al decámetro cuadrado.
1 a = 1 dam2 = 100 m²
La centiárea equivale al metro cuadrado.
1 ca = 1 m²
Las medidas agrarias
Nudo: abreviado kn, es una medida de velocidad utilizada tanto para navegación marítima como aérea. Equivale a una milla náutica por hora. También se utiliza en meteorología para medir la velocidad de los vientos. 1 nudo equivale a 1 milla náutica por hora = 1.852,00 m /h.
Pie: es una unidad de longitud de origen natural (basada en el pie humano), ya utilizada por las civilizaciones antiguas. El pie romano, o pes, equivalía a 29,57 cm; el pie castellano a 27,6 cm, pero en realidad mide 3,48 cm. Actualmente el “pie” se utiliza sólo como unidad de medida popular en los países anglosajones de Estados Unidos y Reino Unido. 1 pie equivale a 12 pulgadas, 1 pie también equivale a 0,3048 metros.
Yarda: es la unidad de longitud, básica en los sistemas de medida utilizados en EE. UU. y Reino Unido. 1 yarda equivale a 3 pies que a su ves son 36 pulgadas y esto es 0,9144 metros.
Milla: es una unidad de longitud que no forma parte del sistema métrico decimal. Equivale exactamente a 1609,344 m y a 5280 pies. Una milla náutica equivale a 1.852 metros.
Pulgada: es una unidad de longitud antropométrica que equivalía a la longitud de un pulgar, y más específicamente a su primera falange. Una pulgada equivale a 25,4 milímetros.
Libra: es una unidad de masa usada desde la Antigua Roma. La palabra, derivada del latín significa "escala o balanza" y representa la principal unidad de peso y masa usada y adoptada en los países anglosajones. Una libra equivale a 0,45359237 kilogramos (1 lb= 0,453 kg) y a su vez, 1 kilogramo es igual a 2,20462262 libras (1 kg= 2,205 lb).
Tonelada: Designa una medida de masa que en el sistema métrico decimal, y actualmente en el Sistema Internacional de Unidades. 1 tonelada métrica o megagramo es igual a:1 000 000 g, 100 000 dag,10 000 hg,1 000 kg, 100 mag, 10 q
Quintal: es una antigua unidad de masa española, que equivale a: 100 libras castellanas, a 46.039625555 kg y a 101.5 libras avoirdupois. El Quintal métrico es el segundo múltiplo del kilogramo y el quinto del gramo. También lleva el nombre de decitonelada, y cuando es mencionado de esta forma se considera primer submúltiplo de la tonelada métrica. Ésta es una unidad muy difundida actualmente para pesar las cosechas.
Campo eléctrico
Esta definición indica que el campo no es directamente medible, sino a través de la medición de la fuerza actuante sobre alguna carga. La idea de campo eléctrico fue propuesta por Michael Faraday al demostrar el principio de inducción electromagnética en el año 1832. Apartir de la ecuación anterior podemos definir un campo electrico en un punto p como: "E= Kqa/a2 = Kqa/a3"
Donde sabemos que k es la constante de un campo se halla k = 1/(4πε); donde ε es la constante del ambiente o espacio donde se está estudiando el campo. â es el vector dirección o unitario que va desde la carga hasta el punto. a es la norma del vector ā que define la distancia entre el punto y la carga.
La diferencia de potencial entre dos puntos (1 y 2) de un campo eléctrico es igual al trabajo que realiza dicho campo sobre la unidad de carga positiva para transportarla desde el punto 1 al punto 2.
Es independiente del camino recorrido por la carga y depende exclusivamente del potencial de los puntos 1 y 2 en el campo; se expresa por la fórmula: V1 – V2= E x r
donde:
V1 - V2 es la diferencia de potencial
E es la Intensidad de campo en newton/culombio
r es la distancia en metros entre los puntos 1 y 2
Igual que el potencial, en el Sistema Internacional de Unidades la diferencia de potencial se mide en voltios.
Aislante eléctrico
Se denomina aislante eléctrico al material con escasa conductividad eléctrica. Aunque no existen cuerpos absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos, forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga, y para confeccionar aisladores, elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico. Los más frecuentemente utilizados son los materiales plásticos y las cerámicas.
El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor).
Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
Se denomina dieléctricos a los materiales que no conducen la electricidad, por lo que pueden ser utilizados como aislantes.
Algunos ejemplos de este tipo de materiales son el vidrio, la cerámica, la cera, el papel, la madera seca, la porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Los dieléctricos se utilizan en la fabricación de condensadores, para que las cargas reaccionen.
La introducción de un dieléctrico en un condensador tiene las siguientes consecuencias:
Disminuye el Campo eléctrico entre las placas del condensador.
Disminuye la diferencia de potencial entre las placas del condensador.
Aumenta la diferencia de potencial máxima que el condensador es capaz de resistir sin que salte una chispa entre las placas (ruptura dieléctrica).
Aumento por tanto de la capacidad eléctrica del condensador.
Normalmente un dieléctrico se vuelve conductor cuando se sobrepasa el campo de ruptura del dieléctrico, es decir, si aumentamos mucho el campo eléctrico que pasa por el dieléctrico, convertiremos dicho material en un conductor.
Los dieléctricos más utilizados son el aire, el papel y la madera.
Diferencia de potencial
La tensión entre dos puntos de un campo eléctrico es igual al trabajo que realiza dicha unidad de carga positiva para transportarla desde el punto A al punto B. En el Sistema Internacional de Unidades, la diferencia de potencial se mide en voltios (V), al igual que el potencial.
La tensión es independiente del camino recorrido por la carga, y depende exclusivamente del potencial eléctrico de los puntos A y B en el campo.
Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de electrones. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico (Ley de Henry). Este traslado de cargas es lo que se conoce como corriente eléctrica.
Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial sea cero.
Circuito eléctrico
Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.
Por el tipo de señal:
De corriente continua
De corriente alterna
Mixtos
Por el tipo de régimen:
Periódico
Transitorio
Permanente
Por el tipo de componentes:
Eléctricos: Resistivos, inductivos, capacitivos y mixtos
Electrónicos: digitales, analógicos y mixtos
Por su configuración:
Serie
Paralelo
La capacidad o capacitancia es una propiedad de los condensadores. Esta propiedad rige la relación existente entre la diferencia de potencial existente entre las placas del capacitor y la carga eléctrica almacenada en este mediante la siguiente ecuación: C= Q donde:
V
C es la capacidad, medida en faradios (en honor al físico experimental Michael Faraday); esta unidad es relativamente grande y suelen utilizarse submúltiplos como el microfaradio o picofaradio.
Q es la carga eléctrica almacenada, medida en culombios;
V es la diferencia de potencial, medida en voltios.
Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del capacitor considerado (de placas paralelas, cilíndrico, esférico). Otro factor del que depende es del dieléctrico que se introduzca entre las dos superficies del condensador. Cuanto mayor sea la constante diléctrica del material no conductor introducido, mayor es la capacidad.
En la práctica, la dinámica eléctrica del condensador se expresa gracias a la siguiente ecuación diferencial, que se obtiene derivando respecto al tiempo la ecuación anterior. i= dQ = CdV
dt dt
Donde i representa la corriente eléctrica, medida en amperios.
En electricidad y electrónica, un condensador o capacitor es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separados por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada).
La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio.
Se denomina faradio o farad (símbolo: F), en honor a Michael Faraday, a la unidad de capacidad eléctrica del Sistema internacional de unidades (SI).
Un faradio es la capacidad de un capacitor entre cuyas armaduras aparece una diferencia de potencial eléctrico de 1 voltio (1 V) cuando está cargado de una cantidad de electricidad igual a un culombio (1 C): F= A.s = C = C2 = C2 = s2.C2 = s4.A
V V J N.m m2.kg m2.kg
Equivalencias:
1 milifaradio (mF) = 0,001 faradios
1 microfaradio (μF) = 0,000001 faradios
1 nanofaradio (nF) = 0,000000001 faradios
1 picofaradio (pF) = 0,000000000001 faradios
No debe confundirse con el faraday (unidad), que es una antigua unidad de carga eléctrica equivalente a la constante de Faraday.
Biografía de Joule
James Prescott Joule nació en el seno de una familia dedicada a la fabricación de cervezas. De carácter tímido y humilde, recibió clases particulares en su propio de hogar de física y matemáticas, siendo su profesor el químico británico John Dalton; compaginaba estas clases con su actividad profesional, trabajando junto a su padre en la destilería, la cual llegó a dirigir. Dalton le alentó hacia la investigación científica y realizó sus primeros experimentos en un laboratorio cercano a la fabrica de cervezas, formándose a la vez en la Universidad de Manchester.
Joule estudió aspectos relativos al magnetismo, especialmente los relativos a la imantación del hierro por la acción de corrientes eléctricas, que le llevaron a la invención del motor eléctrico. Descubrió también el fenómeno de magnetostricción, que aparece en los materiales ferromagnéticos, en los que su longitud depende de su estado de magnetización.
Pero el área de investigación más fructífera de Joule es la relativa a las distintas formas de energía: con sus experimentos verifica que al fluir una corriente eléctrica a través de un conductor, éste experimenta un incremento de temperatura; a partir de ahí dedujo que si la fuente de energía eléctrica es una pila electroquímica, la energía habría de proceder de la transformación llevada a cabo por las reacciones químicas, que la convertirían en energía eléctrica y de esta se transformaría en calor. Si en el circuito se introduce un nuevo elemento, el motor eléctrico, se origina energía mecánica. Ello le lleva a la enunciación del principio de conservación de la energía, y aunque hubo otros físicos de renombre que contribuyeron al establecimiento de este principio como Meyer, Thomson y Helmholtz, fue Joule quien le proporcionó una mayor solidez.
En 1840 Joule publicó Producción de calor por la electricidad voltaica, en la que estableció la ley que lleva su nombre y que afirma que el calor originado en un conductor por el paso de la corriente eléctrica es proporcional al producto de la resistencia del conductor por el cuadrado de la intensidad de corriente. En 1843, después de numerosos experimentos, obtuvo el valor numérico del equivalente mecánico del calor, que concluyó que era de 0,424 igual a una caloría, lo que permitía la conversión de las unidades mecánicas y térmicas; este es un valor muy similar al considerado actualmente como de 0,427. De ese modo quedaba firmemente establecida la relación entre calor y trabajo, ya avanzada por Rumford, que sirvió de piedra angular para el posterior desarrollo de la termodinámica estadística. En estos trabajos Joule se basaba en la ley de conservación de la energía, descubierta en 1842.
A pesar de que en 1848 ya había publicado un articulo refrene a la teoría cinética de los gases, donde por primera vez se estimaba la velocidad de las moléculas gaseosas, abandonó su linea de investigación y prefirió convertirse en ayudante de William Thomson (Lord Kelvin), y, como fruto de esta colaboración, se llegó al descubrimiento del efecto Joule-Thomson, según el cual es posible enfriar un gas en expansión si se lleva a cabo el trabajo necesario para separar las moléculas del gas. Ello posibilitó posteriormente la licuefacción de los gases y llevó a la ley de la energía interna de un gas perfecto, según la cual la energía interna de un gas perfecto es independiente de su volumen y dependiente de la temperatura.
Ley de Joule
Biografía de Ohm
(Erlangen, actual Alemania, 1789-Munich, 1854) Físico alemán. Descubridor de la ley de la electricidad que lleva su nombre, según la cual la intensidad de una corriente a través de un conductor es directamente proporcional a la diferencia de potencial entre los extremos del conductor e inversamente proporcional a la resistencia que éste opone al paso de la corriente.
Hijo de un herrero, alternó en los años de adolescencia el trabajo con los estudios, en los que demostró preferencia por los de carácter científico. En 1803 empezó a asistir a la Universidad de Erlangen, donde hizo rápidos progresos. Primero enseñó como maestro en Bamberg; pero en 1817 fue nombrado profesor de Matemáticas y Física en el instituto de Colonia.Dedicado desde el principio a los estudios de galvanoelectricidad, en 1827 publicó aspectos más detallados de su ley en un artículo titulado Die galvanische Kette, mathematisch bearbeitet (El circuito galvánico investigado matemáticamente), que, paradójicamente, recibió una acogida tan fría que lo impulsó a presentar la renuncia a su cargo en el colegio jesuita. Finalmente, en 1833 aceptó una plaza en la Escuela Politécnica de Nuremberg.
Posteriormente su labor comenzó a ser justamente valorada. En 1844, Pouillet resaltaba la importancia de sus intuiciones y al año siguiente Ohm recibía la medalla Copley de la Royal Society de Londres. En 1849 se le confería la cátedra de Física de Munich, donde fue también asesor de la Administración de telégrafos. En honor a su labor, la unidad de resistencia eléctrica del sistema internacional lleva su nombre (ohmio).